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Midterm exam
Online using Crabster.org
Wed Jun 24 3:00 to 5:00 
pm EDT.

If you need an 
accommodation, please 
let us know soon.

We will have covered all 
material for midterm by 
end of this lecture.
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Material for midterm:

1. All the lecture topics from 
start until end of deadlock.

2. All the labs on these topics.

3. Projects 1 and 2.



Interrupt enable/disable pattern
Adding thread to lock wait queue + switching must be atomic.

Swapcontext invariants for uniprocessors:

1. Thread must leave interrupts disabled when calling swapcontext.

2. All threads assume interrupts are disabled when returning from 
swapcontext.

3. Must re-enable interrupts before returning to user code.

3



Correct pattern on uniprocessor
lock( )

{
disable interrupts;
if ( status == FREE )

status = BUSY;
else

{
add thread to queue of

threads waiting for lock;
switch to next ready thread;
}

enable interrupts;
}
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unlock( )
{
disable interrupts;
status = FREE;
if ( any thread is waiting

for this lock )
{
move waiting thread to

ready queue;
status = BUSY;
}

enable interrupts;
}

When we switch context, interrupts must be disabled.  So, they’re still 
disabled when we’re switched back and we must immediately re-enable 
them.  (We can only swap back to somewhere that swapped context.)
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Thread A

back from swapcontext
enable interrupts
}

<user code runs>
lock( )

{
disable interrupts
swapcontext

back from swapcontext
enable interrupts
}

Thread B
lock( )
yield( )

{
disable interrupts
swapcontext

back from swapcontext
enable interrupts
}

<user code runs>
unlock( )

{
move thread A to ready queue;
}

yield( )
{
disable interrupts;
swapcontext



Locks on multiprocessors
On uniprocessor, disabling interrupts prevents current thread from 
being switched out.

But this doesn’t work on a multiprocessor:
1. Other processors are still running threads.
2. Not acceptable to stop all other CPUs from executing.

Solution is an atomic TestAndSet in a spin lock.
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Atomic Read-Modify-Write:  Test-And-Set

Semantics of test-and-set are to 
atomically write 1 to a memory 
location and return the old value.

In Project 2, use exchange in 
std::atomic

TestAndSet( X )
{
old = X;
X = 1;
return old;
}

Atomic



TestAndSet usage
// lock is initially free.

int status = 0;

SpinLock( )
{
while ( TestAndSet( status ) )

;
}

ReleaseSpinLock( )
{
status = 0;
}
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If you are able to change 
the status from 0 to 1, it 
means you successfully 
took the lock.

TestAndSet is atomic, so 
only one thread will see 
transition from 0 to 1.



Correct pattern on a multiprocessor
int guard = 0;

lock( )
{
disable interrupts;
while ( TestAndSet( guard ) )

;

if (status == FREE)
status = BUSY;

else
{
add thread to queue of threads

waiting for lock;
switch to next ready thread;
}

guard = 0;
enable interrupts;
}
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unlock( )
{
disable interrupts;
while ( TestAndSet( guard ) )

;

status = FREE;
if ( any thread is waiting for

this lock )
{
move waiting thread to ready

queue;
status = BUSY;
}

guard = 0;
enable interrupts;
}



Would this work?
int guard = 0;

lock( )
{
// disable interrupts;
while ( TestAndSet( guard ) )

;

if (status == FREE)
status = BUSY;

else
{
add thread to queue of threads

waiting for lock;
switch to next ready thread;
}

guard = 0;
// enable interrupts;
}
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unlock( )
{
disable interrupts;
while ( TestAndSet( guard ) )

;

status = FREE;
if ( any thread is waiting for

this lock )
{
move waiting thread to ready

queue;
status = BUSY;
}

guard = 0;
enable interrupts;
}

No, we could get a timer interrupt holding the guard that might want to move us to 
the ready queue but it wouldn’t be able to acquire the guard to do that.



Would this work?
int guard = 0;

lock( )
{
while ( TestAndSet( guard ) )

;

disable interrupts;
if (status == FREE)

status = BUSY;
else

{
add thread to queue of threads

waiting for lock;
switch to next ready thread;
}

guard = 0;
enable interrupts;
}
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unlock( )
{
disable interrupts;
while ( TestAndSet( guard ) )

;

status = FREE;
if ( any thread is waiting for

this lock )
{
move waiting thread to ready

queue;
status = BUSY;
}

guard = 0;
enable interrupts;
}

No, we could be switched out, holding the guard, locking out the other threads in 
this spin lock.



Multi-CPU switch invariant
Before switching to another thread

Disable interrupts and acquire guard

When call to swapcontext returns, can assume
Interrupts disabled and guard acquired

Before returning to user-level code
Enable interrupts and release guard
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Summary of lock solution
High-level idea:

Atomically add thread to a waiting list and go to sleep.

How did we achieve this?
1. Disable interrupts and TestAndSet( guard ) to protect the critical 

section.
2. Switch to another thread and hand off the task of enabling 

interrupts and resetting the guard.

What if no other thread to run?
Atomically suspend CPU with interrupts enabled.
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Constraining schedules

So far, we have made programs correct by constraining 
schedules

Allow only correct orderings
Maximize concurrency 

But, also possible to over-constrain schedules
A must happen before B
B must happen before A
Deadlock is a common result of over-constraint
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Starvation
Starvation is a condition where a thread is perpetually denied 
resources needed to make progress.

We’ve encountered notion of starvation in discussion of the RW lock 
in lecture 5, where we were concerned that if lots of new readers 
kept coming in, a waiting writer might a long, long time, maybe 
forever.

So, we modified the lock algorithm so that if there were any waiting 
writers, new readers would wait.
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Avoiding writer starvation
void ReadLock ( )

{
rwLock.lock( )
while ( writers > 0 ||

waitingWriters > 0 )
waitingReaders.wait( );

readers++;
rwLock.unlock( );
}

void ReadUnlock( )
{
rwLock.lock( )
if ( readers == 1 )

waitingWriters.signal( );
readers--;
rwLock.unlock( )
}

void WriteLock( )
{
rwLock.lock( );
while ( readers > 0 ||

writers > 0 )
waitingWriters.wait( );

writers++;
rwLock.unlock( );
}

void WriteUnlock( )
{
rwLock.lock( );
writers--;
waitingReaders.broadcast( );
waitingWriters.signal( );
rwLock.unlock( );
}



Deadlock
Resources

Things needed by a thread that it waits for
Examples: locks, disk space, memory, CPU

Deadlock
Cyclical waiting for resources which prevents progress
The extreme case of starvation where threads wait will wait not just 
possibly a long time, they will wait forever.

Example: Swapping classes
Barack is in 482, Michelle is in 485, and they want to switch, but 
neither wants to give up what they already have.
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Class example
Resources are seats in class

Both Barack and Michelle wait forever
Deadlock always leads to starvation
Not all starvation is deadlock (e.g., R/W lock)

Not all threads are starved
Other students can add/drop other classes

18



Deadlock example
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Thread A
x.lock( );
y.lock( );
...
y.unlock( );
x.unlock( );

Thread B
y.lock( );
x.lock( );
...
x.unlock( );
y.unlock( );

1 2

3 4

Will a deadlock always occur?
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Dining philosophers

5 philosophers sit at round 
table.

One chopstick between each 
pair of philosophers.

Each philosopher needs two 
chopsticks to eat.
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Dining philosophers
// Proposed algorithm

EatMeal( )
{
Wait for right chopstick

to be free;
Pick up right chopstick;
Wait for left chopstick

to be free;
Pick up left chopstick;
Eat the meal;
Put both chopsticks down;
}

Can this deadlock?



Generic pattern of resource acquisition and release

// Phase 1
while ( !done )

{
acquire resources;
do some work;
}

// Phase 2
release all resources;
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As a program runs, it tends 
to accumulate resources 
and then release them at 
the end.



Waits-for graph

Cycle represents a 
deadlock.
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thread A

thread B

resource xresource y

Owned by

Owned by

Waiting for

Waiting for



Waits-for graph
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thread A

thread B

resource xresource y

Owned by

Owned by

Waiting for

Waiting for
Thread A
x.lock( );
y.lock( );
...
y.unlock( );
x.unlock( );

1

3

Thread B
y.lock( );
x.lock( );
...
x.unlock( );
y.unlock( );

2

4



Coping with deadlocks
Alternatives:
1. Ignore.

Typical OS strategy for application deadlocks.
Do deadlocked apps consume CPU?

2. Detect and fix.
Use waits-for graph to detect.
How to fix?

Could kill threads but not always safe to do so.
Invariants can be broken while a thread holds a lock.

Databases can rollback to a previous representation invariant state and 
restart, but general purpose rollback is costly, difficult.

3. Prevent them from occurring.
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Four necessary conditions for deadlock

1. Limited resources:  Not enough to serve all threads simultaneously.

2. No preemption:  Can’t force threads to give up resources.

3. Hold and wait:  Threads hold resources while waiting to acquire 
others.

4. Cyclical chain of requests.
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Four necessary conditions for deadlock

1. Limited resources:  Not enough to serve all threads simultaneously.

2. No preemption:  Can’t force threads to give up resources.

3. Hold and wait:  Threads hold resources while waiting to acquire 
others.

4. Cyclical chain of requests.
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Limited resources
Could increase # of resources, e.g., buy more machines, use finer-
grained locking.

Not always feasible, e.g., you may only have the number of 
machines you have, not the number you wish you had, and more 
locks may introduce new problems.
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Four necessary conditions for deadlock

1. Limited resources:  Not enough to serve all threads simultaneously.

2. No preemption:  Can’t force threads to give up resources.

3. Hold and wait:  Threads hold resources while waiting to acquire 
others.

4. Cyclical chain of requests.
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No preemption
Some resources can be preempted, e.g., the CPU, if interrupts are 
enabled.

Others (e.g., locks) are not preemptable.
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Four necessary conditions for deadlock

1. Limited resources:  Not enough to serve all threads simultaneously.

2. No preemption:  Can’t force threads to give up resources.

3. Hold and wait:  Threads hold resources while waiting to acquire 
others.

4. Cyclical chain of requests.
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Hold-and-wait
Happens because threads acquire resources incrementally.

Two ways to avoid hold and wait:

1. Wait for all resources to be free, then grab all atomically.

2. If cannot get an additional resource, release all and start 
over.
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Move resource allocation to the beginning.
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// Phase 1
while ( !done )

{
acquire resources;
do some work;
}

// Phase 2
release all resources;

// Phase 1a
acquire all resources;

// Phase 1b
while ( !done )

do work;

// Phase 2
release all resources;



Atomic acquisition
// Revised algorithm

mutex m;
cv c;

EatMeal( )
{
m.lock( )
while ( either chopstick busy )

c.wait( &m );
Pick up left chopstick;
Pick up right chopstick;
m.unlock( );
Eat the meal;
m.lock( );
Put both chopsticks down;
c.broadcast( );
m.unlock( );
}
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// Initial algorithm

EatMeal( )
{
Wait for right chopstick

to be free;
Pick up right chopstick;
Wait for left chopstick

to be free;
Pick up left chopstick;
Eat the meal;
Put both chopsticks down;
}



But what happens if it’s repeated?
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mutex m;
cv c;

TakeBite( )
{
m.lock( )
while ( either chopstick busy )

c.wait( &m );
Pick up left chopstick;
Pick up right chopstick;
m.unlock( );
Eat one bite;
m.lock( );
Put both chopsticks down;
c.broadcast( );
m.unlock( );
}

// Pick up the chopsticks and
// set them down again for
// each bite.

EatMeal( )
{
while ( !done )

TakeBite( );
}
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If all necessary resources are 
acquired atomically and 
everyone only needs them once, 
deadlock cannot occur.

But if resource requests keep 
coming in, starvation can occur 
because there’s no guarantee 
who will run next.

Scenario:

A and C take a bite.

B and D  take a bite.

Then A and C take another bite.

E starves (at least for a while.)

A

E

D C

B



Tends to be wasteful
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Forces the acquisition of 
all possible resources 
that might ever be 
needed even though 
most may never actually 
be needed.

May even create new 
deadlock patterns.

// Phase 1a
acquire all resources;

// Phase 1b
while ( !done )

do work;

// Phase 2
release all resources;



Four necessary conditions for deadlock

1. Limited resources:  Not enough to serve all threads simultaneously.

2. No preemption:  Can’t force threads to give up resources.

3. Hold and wait:  Threads hold resources while waiting to acquire 
others.

4. Cyclical chain of requests.
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Eliminating circular chain
Define a global order over all resources by numbering them.

The numbering can be arbitrary but is usually least precious first 
to most precious last (so you hold the most precious resources 
the shortest amount of time.)

All threads acquire resources in this order.

40



Dining philosophers
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Solution:

Pick up the lower number 
chopstick first, then pick up 
the higher number chopstick.

Might get to a situation 
where E blocks but D 
proceeds, then C, etc., until 
A finishes, then E proceeds.

No deadlock.

4

3

21

5

A

E

D C

B



Eliminating the circular chain
But what if you already 
hold the higher number 
resource but also want 
the lower number 
resource?

You must first give up 
the higher number, then 
take them both in order.

You must rewrite your 
code to ensure you 
follow the pattern.  It’s a 
bug and you have to fix 
it.
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Thread A
x.lock( );
y.lock( );
...
y.unlock( );
x.unlock( );

Thread B
y.lock( );
x.lock( );
...
x.unlock( );
y.unlock( );

Thread B
y.lock( );
y.unlock( );
x.lock( );
y.lock( );
...
y.unlock( );
x.unlock( );



This completes the section on threads and synchronization.

Up next:  Virtual memory.
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