
EECS 482 Introduction to Operating Systems
Spring/Summer 2020
Lecture 9: Deadlock

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Midterm exam
Online using Crabster.org
Wed Jun 24 3:00 to 5:00
pm EDT.

If you need an
accommodation, please
let us know soon.

We will have covered all
material for midterm by
end of this lecture.

2

Material for midterm:

1. All the lecture topics from
start until end of deadlock.

2. All the labs on these topics.

3. Projects 1 and 2.

Interrupt enable/disable pattern
Adding thread to lock wait queue + switching must be atomic.

Swapcontext invariants for uniprocessors:

1. Thread must leave interrupts disabled when calling swapcontext.

2. All threads assume interrupts are disabled when returning from
swapcontext.

3. Must re-enable interrupts before returning to user code.

3

Correct pattern on uniprocessor
lock()

{
disable interrupts;
if (status == FREE)

status = BUSY;
else

{
add thread to queue of

threads waiting for lock;
switch to next ready thread;
}

enable interrupts;
}

4

unlock()
{
disable interrupts;
status = FREE;
if (any thread is waiting

for this lock)
{
move waiting thread to

ready queue;
status = BUSY;
}

enable interrupts;
}

When we switch context, interrupts must be disabled. So, they’re still
disabled when we’re switched back and we must immediately re-enable
them. (We can only swap back to somewhere that swapped context.)

5

Thread A

back from swapcontext
enable interrupts
}

<user code runs>
lock()

{
disable interrupts
swapcontext

back from swapcontext
enable interrupts
}

Thread B
lock()
yield()

{
disable interrupts
swapcontext

back from swapcontext
enable interrupts
}

<user code runs>
unlock()

{
move thread A to ready queue;
}

yield()
{
disable interrupts;
swapcontext

Locks on multiprocessors
On uniprocessor, disabling interrupts prevents current thread from
being switched out.

But this doesn’t work on a multiprocessor:
1. Other processors are still running threads.
2. Not acceptable to stop all other CPUs from executing.

Solution is an atomic TestAndSet in a spin lock.

6

7

Atomic Read-Modify-Write: Test-And-Set

Semantics of test-and-set are to
atomically write 1 to a memory
location and return the old value.

In Project 2, use exchange in
std::atomic

TestAndSet(X)
{
old = X;
X = 1;
return old;
}

Atomic

TestAndSet usage
// lock is initially free.

int status = 0;

SpinLock()
{
while (TestAndSet(status))

;
}

ReleaseSpinLock()
{
status = 0;
}

8

If you are able to change
the status from 0 to 1, it
means you successfully
took the lock.

TestAndSet is atomic, so
only one thread will see
transition from 0 to 1.

Correct pattern on a multiprocessor
int guard = 0;

lock()
{
disable interrupts;
while (TestAndSet(guard))

;

if (status == FREE)
status = BUSY;

else
{
add thread to queue of threads

waiting for lock;
switch to next ready thread;
}

guard = 0;
enable interrupts;
}

9

unlock()
{
disable interrupts;
while (TestAndSet(guard))

;

status = FREE;
if (any thread is waiting for

this lock)
{
move waiting thread to ready

queue;
status = BUSY;
}

guard = 0;
enable interrupts;
}

Would this work?
int guard = 0;

lock()
{
// disable interrupts;
while (TestAndSet(guard))

;

if (status == FREE)
status = BUSY;

else
{
add thread to queue of threads

waiting for lock;
switch to next ready thread;
}

guard = 0;
// enable interrupts;
}

10

unlock()
{
disable interrupts;
while (TestAndSet(guard))

;

status = FREE;
if (any thread is waiting for

this lock)
{
move waiting thread to ready

queue;
status = BUSY;
}

guard = 0;
enable interrupts;
}

No, we could get a timer interrupt holding the guard that might want to move us to
the ready queue but it wouldn’t be able to acquire the guard to do that.

Would this work?
int guard = 0;

lock()
{
while (TestAndSet(guard))

;

disable interrupts;
if (status == FREE)

status = BUSY;
else

{
add thread to queue of threads

waiting for lock;
switch to next ready thread;
}

guard = 0;
enable interrupts;
}

11

unlock()
{
disable interrupts;
while (TestAndSet(guard))

;

status = FREE;
if (any thread is waiting for

this lock)
{
move waiting thread to ready

queue;
status = BUSY;
}

guard = 0;
enable interrupts;
}

No, we could be switched out, holding the guard, locking out the other threads in
this spin lock.

Multi-CPU switch invariant
Before switching to another thread

Disable interrupts and acquire guard

When call to swapcontext returns, can assume
Interrupts disabled and guard acquired

Before returning to user-level code
Enable interrupts and release guard

12

Summary of lock solution
High-level idea:

Atomically add thread to a waiting list and go to sleep.

How did we achieve this?
1. Disable interrupts and TestAndSet(guard) to protect the critical

section.
2. Switch to another thread and hand off the task of enabling

interrupts and resetting the guard.

What if no other thread to run?
Atomically suspend CPU with interrupts enabled.

13

Constraining schedules

So far, we have made programs correct by constraining
schedules

Allow only correct orderings
Maximize concurrency

But, also possible to over-constrain schedules
A must happen before B
B must happen before A
Deadlock is a common result of over-constraint

14

Starvation
Starvation is a condition where a thread is perpetually denied
resources needed to make progress.

We’ve encountered notion of starvation in discussion of the RW lock
in lecture 5, where we were concerned that if lots of new readers
kept coming in, a waiting writer might a long, long time, maybe
forever.

So, we modified the lock algorithm so that if there were any waiting
writers, new readers would wait.

15

16

Avoiding writer starvation
void ReadLock ()

{
rwLock.lock()
while (writers > 0 ||

waitingWriters > 0)
waitingReaders.wait();

readers++;
rwLock.unlock();
}

void ReadUnlock()
{
rwLock.lock()
if (readers == 1)

waitingWriters.signal();
readers--;
rwLock.unlock()
}

void WriteLock()
{
rwLock.lock();
while (readers > 0 ||

writers > 0)
waitingWriters.wait();

writers++;
rwLock.unlock();
}

void WriteUnlock()
{
rwLock.lock();
writers--;
waitingReaders.broadcast();
waitingWriters.signal();
rwLock.unlock();
}

Deadlock
Resources

Things needed by a thread that it waits for
Examples: locks, disk space, memory, CPU

Deadlock
Cyclical waiting for resources which prevents progress
The extreme case of starvation where threads wait will wait not just
possibly a long time, they will wait forever.

Example: Swapping classes
Barack is in 482, Michelle is in 485, and they want to switch, but
neither wants to give up what they already have.

17

Class example
Resources are seats in class

Both Barack and Michelle wait forever
Deadlock always leads to starvation
Not all starvation is deadlock (e.g., R/W lock)

Not all threads are starved
Other students can add/drop other classes

18

Deadlock example

19

Thread A
x.lock();
y.lock();
...
y.unlock();
x.unlock();

Thread B
y.lock();
x.lock();
...
x.unlock();
y.unlock();

1 2

3 4

Will a deadlock always occur?

21

Dining philosophers

5 philosophers sit at round
table.

One chopstick between each
pair of philosophers.

Each philosopher needs two
chopsticks to eat.

22

Dining philosophers
// Proposed algorithm

EatMeal()
{
Wait for right chopstick

to be free;
Pick up right chopstick;
Wait for left chopstick

to be free;
Pick up left chopstick;
Eat the meal;
Put both chopsticks down;
}

Can this deadlock?

Generic pattern of resource acquisition and release

// Phase 1
while (!done)

{
acquire resources;
do some work;
}

// Phase 2
release all resources;

23

As a program runs, it tends
to accumulate resources
and then release them at
the end.

Waits-for graph

Cycle represents a
deadlock.

24

thread A

thread B

resource xresource y

Owned by

Owned by

Waiting for

Waiting for

Waits-for graph

25

thread A

thread B

resource xresource y

Owned by

Owned by

Waiting for

Waiting for
Thread A
x.lock();
y.lock();
...
y.unlock();
x.unlock();

1

3

Thread B
y.lock();
x.lock();
...
x.unlock();
y.unlock();

2

4

Coping with deadlocks
Alternatives:
1. Ignore.

Typical OS strategy for application deadlocks.
Do deadlocked apps consume CPU?

2. Detect and fix.
Use waits-for graph to detect.
How to fix?

Could kill threads but not always safe to do so.
Invariants can be broken while a thread holds a lock.

Databases can rollback to a previous representation invariant state and
restart, but general purpose rollback is costly, difficult.

3. Prevent them from occurring.

26

Four necessary conditions for deadlock

1. Limited resources: Not enough to serve all threads simultaneously.

2. No preemption: Can’t force threads to give up resources.

3. Hold and wait: Threads hold resources while waiting to acquire
others.

4. Cyclical chain of requests.

27

Four necessary conditions for deadlock

1. Limited resources: Not enough to serve all threads simultaneously.

2. No preemption: Can’t force threads to give up resources.

3. Hold and wait: Threads hold resources while waiting to acquire
others.

4. Cyclical chain of requests.

28

Limited resources
Could increase # of resources, e.g., buy more machines, use finer-
grained locking.

Not always feasible, e.g., you may only have the number of
machines you have, not the number you wish you had, and more
locks may introduce new problems.

29

Four necessary conditions for deadlock

1. Limited resources: Not enough to serve all threads simultaneously.

2. No preemption: Can’t force threads to give up resources.

3. Hold and wait: Threads hold resources while waiting to acquire
others.

4. Cyclical chain of requests.

30

No preemption
Some resources can be preempted, e.g., the CPU, if interrupts are
enabled.

Others (e.g., locks) are not preemptable.

31

Four necessary conditions for deadlock

1. Limited resources: Not enough to serve all threads simultaneously.

2. No preemption: Can’t force threads to give up resources.

3. Hold and wait: Threads hold resources while waiting to acquire
others.

4. Cyclical chain of requests.

32

Hold-and-wait
Happens because threads acquire resources incrementally.

Two ways to avoid hold and wait:

1. Wait for all resources to be free, then grab all atomically.

2. If cannot get an additional resource, release all and start
over.

33

Move resource allocation to the beginning.

34

// Phase 1
while (!done)

{
acquire resources;
do some work;
}

// Phase 2
release all resources;

// Phase 1a
acquire all resources;

// Phase 1b
while (!done)

do work;

// Phase 2
release all resources;

Atomic acquisition
// Revised algorithm

mutex m;
cv c;

EatMeal()
{
m.lock()
while (either chopstick busy)

c.wait(&m);
Pick up left chopstick;
Pick up right chopstick;
m.unlock();
Eat the meal;
m.lock();
Put both chopsticks down;
c.broadcast();
m.unlock();
}

35

// Initial algorithm

EatMeal()
{
Wait for right chopstick

to be free;
Pick up right chopstick;
Wait for left chopstick

to be free;
Pick up left chopstick;
Eat the meal;
Put both chopsticks down;
}

But what happens if it’s repeated?

36

mutex m;
cv c;

TakeBite()
{
m.lock()
while (either chopstick busy)

c.wait(&m);
Pick up left chopstick;
Pick up right chopstick;
m.unlock();
Eat one bite;
m.lock();
Put both chopsticks down;
c.broadcast();
m.unlock();
}

// Pick up the chopsticks and
// set them down again for
// each bite.

EatMeal()
{
while (!done)

TakeBite();
}

37

If all necessary resources are
acquired atomically and
everyone only needs them once,
deadlock cannot occur.

But if resource requests keep
coming in, starvation can occur
because there’s no guarantee
who will run next.

Scenario:

A and C take a bite.

B and D take a bite.

Then A and C take another bite.

E starves (at least for a while.)

A

E

D C

B

Tends to be wasteful

38

Forces the acquisition of
all possible resources
that might ever be
needed even though
most may never actually
be needed.

May even create new
deadlock patterns.

// Phase 1a
acquire all resources;

// Phase 1b
while (!done)

do work;

// Phase 2
release all resources;

Four necessary conditions for deadlock

1. Limited resources: Not enough to serve all threads simultaneously.

2. No preemption: Can’t force threads to give up resources.

3. Hold and wait: Threads hold resources while waiting to acquire
others.

4. Cyclical chain of requests.

39

Eliminating circular chain
Define a global order over all resources by numbering them.

The numbering can be arbitrary but is usually least precious first
to most precious last (so you hold the most precious resources
the shortest amount of time.)

All threads acquire resources in this order.

40

Dining philosophers

41

Solution:

Pick up the lower number
chopstick first, then pick up
the higher number chopstick.

Might get to a situation
where E blocks but D
proceeds, then C, etc., until
A finishes, then E proceeds.

No deadlock.

4

3

21

5

A

E

D C

B

Eliminating the circular chain
But what if you already
hold the higher number
resource but also want
the lower number
resource?

You must first give up
the higher number, then
take them both in order.

You must rewrite your
code to ensure you
follow the pattern. It’s a
bug and you have to fix
it.

42

Thread A
x.lock();
y.lock();
...
y.unlock();
x.unlock();

Thread B
y.lock();
x.lock();
...
x.unlock();
y.unlock();

Thread B
y.lock();
y.unlock();
x.lock();
y.lock();
...
y.unlock();
x.unlock();

This completes the section on threads and synchronization.

Up next: Virtual memory.

43

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 9: Deadlock
	Midterm exam
	Interrupt enable/disable pattern
	Correct pattern on uniprocessor
	Slide Number 5
	Locks on multiprocessors
	Atomic Read-Modify-Write: Test-And-Set
	TestAndSet usage
	Correct pattern on a multiprocessor
	Would this work?
	Would this work?
	Multi-CPU switch invariant
	Summary of lock solution
	Constraining schedules
	Starvation
	Avoiding writer starvation
	Deadlock
	Class example
	Deadlock example
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Generic pattern of resource acquisition and release
	Waits-for graph
	Waits-for graph
	Coping with deadlocks
	Four necessary conditions for deadlock
	Four necessary conditions for deadlock
	Limited resources
	Four necessary conditions for deadlock
	No preemption
	Four necessary conditions for deadlock
	Hold-and-wait
	Move resource allocation to the beginning.
	Atomic acquisition
	But what happens if it’s repeated?
	Slide Number 37
	Tends to be wasteful
	Four necessary conditions for deadlock
	Eliminating circular chain
	Dining philosophers
	Eliminating the circular chain
	This completes the section on threads and synchronization.

